The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmas
نویسنده
چکیده
The future fusion power plants that are based on magnetic confinement will deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come, for instance, from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite eigenmodes in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction of heating efficiency. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. Two models have been developed to simulate the interaction between energetic ions and Alfvén eigenmodes. One is a bump-on-tail model, of which two versions have been developed: one fully nonlinear and one quasilinear. The quasilinear version has a lower dimensionality of particle phase space than the nonlinear one. Unlike previous similar studies, the bump-on-tail model contains a decorrelation of the wave–particle phase in order to model stochasticity of the system. When the characteristic time scale for macroscopic phase decorrelation is similar to or shorter than the time scale of nonlinear wave–particle dynamics, the nonlinear and the quasilinear descriptions quantitatively agree. A finite phase decorrelation changes the growth rate and the saturation amplitude of the wave mode in systems with an inverted energy distribution around the wave–particle resonance. Analytical expressions for the correction of the growth rate and the saturation amplitude have been derived, which agree well with numerical simulations. A relatively weak phase decorrelation also diminishes frequency chirping events of the eigenmode. The second model is called FOXTAIL, and it has a wider regime of validity than the bump-on-tail model. FOXTAIL is able to simulate systems with multiple eigenmodes, and it includes effects of different individual particle orbits relative to the wave fields. Simulations with FOXTAIL and the nonlinear bump-on-tail model have been compared in order to determine the regimes of validity of the bump-on-tail model quantitatively. Studies of two-mode scenarios confirmed the expected consequences of a fulfillment of the Chirikov criterion for resonance overlap. The influence of ICRH on the eigenmode– energetic ion system has also been studied, showing qualitatively similar effects as seen by the presence of phase decorrelation. Another model, describing the efficiency of fast wave current drive, has been developed in order to study the influence of passive components close to the antenna, in which currents can be induced by the antenna generated wave field. It was found that the directivity of the launched wave, averaged over model parameters, was lowered by the presence of passive components in general, except for low values of the single pass damping of the wave, where the directivity was slightly increased, but reversed in the toroidal direction.
منابع مشابه
A bump-on-tail model for Alfvén eigenmodes in toroidal plasmas
Presented is a numerical model for solving the nonlinear dynamics of Alfvén eigenmodes and energetic ions self-consistently. The model is an extension of a previous bump-on-tail model [1, 2], taking into account particle orbits and wave fields in realistic toroidal geometries. The model can be used in conjunction with an orbit averaged Monte Carlo code that handles heating and current drive (si...
متن کاملEnergetic-Ion-Driven Global Instabilities Observed in the Large Helical Device and Their Effects on Energetic Ion Confinement
This paper reviews various global instabilities destabilized by tangential neutral beam injection (NBI) in the Large Helical Device (LHD) plasmas. These global modes are toroidal Alfvén eigenmodes (TAEs), which are also observed in tokamak plasmas, and helicity-induced Alfvén eigenmodes (HAEs) which are observed only in three-dimensional plasmas such as LHD plasmas. Moreover, reversed magnetic ...
متن کاملTheory and observations of low frequency eigenmodes due to Alfvén acoustic coupling in toroidal fusion plasmas2
New theory developments and experimental observations of two classes of energetic particle driven instabilities are reported. First is a new class of global MHD solutions resulting from coupling of the Alfvénic and acoustic fundamental MHD oscillations due to geodesic curvature. These modes, predicted theoretically and numerically and called Beta-induced Alfvén-Acoustic Eigenmodes (BAAEs), have...
متن کاملNonlinear frequency oscillation of Alfvén eigenmodes in fusion plasmas.
A nonlinear oscillation of frequency and amplitude is found by massively parallel gyrokinetic simulations of Alfvén eigenmodes excited by energetic particles in toroidal plasmas. The fast and repetitive frequency chirping is induced by the evolution of coherent structures in the phase space. The dynamics of the coherent structures is controlled by the competition between the phase-space island ...
متن کاملCharacterization of Stable and Unstable Alfvén Eigenmodes in Alcator C-Mod
Experiments designed to characterize both stable and unstable Alfvén eigenmodes are a key part of the Alcator C-Mod physics program. Stable intermediate toroidal mode number (3 ≤ n ≤ 14) Alfvén eigenmodes, which are expected to be the most unstable in ITER, are excited with a set of active MHD antennas and their damping rates are measured as a function of plasma parameters. This is part of an i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016